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Three-dimensional natural convection in a confined porous 
medium heated from below 
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Previous analyses of natural convection in a porous medium have drawn seemingly 
contradictory conclusions as to whether the motion is two- or three-dimensional. 
This investigation uses numerical results to show the relationship between previous 
contending observations, and demonstrates that there exists more than one mode of 
convection for any particular physical configuration and Rayleigh number. In  some 
cases, a particular flow situation may be stable even though it does not maximize 
the energy transfer across the system. 

The methods used are based on the efficient numerical solution of the governing 
equations, formulated with the definition of a vector potential. This approach is 
shown to be superior to formulating the equations in terms of pressure. 

For a cubic region the flow pattern at a particular value of the Rayleigh number 
is not unique and is determined by the initial conditions. In  some cases there exist 
four alternatives, two- and three-dimensional, steady and unsteady. 

1. Introduction 
Although the flow of fluid through porous media by the process of natural convection 

has received considerable attention since the earliest work by Horton & Rogers (1945) 
there still exist major points of interest and contention. Early work (for example, 
Lapwood 1948; and Katto & Masuoka 1967) investigated the critical conditions 
(Rayleigh number) at  which the heat transport process changes from purely conduc- 
tive to convective transfer, and later studies (for example Elder 1967) concentrated 
on the convective flows for conditions moderately above this critical Rayleigh number 
R (which is 4n2 for an infinitely wide layer). Combarnous & LeFur (1969) observed in 
their experiments that another modal transition occurred at  a second critical Rayleigh 
number R, (which they found to be within the range 240-280), and the new convective 
regime above this Rayleigh number was described by Caltagirone, Cloupeau & 
Cornbarnous (1971) to be permanently unsteady, with motion occurring in fluctuating 
two-dimensional convective rolls. These fluctuating states were also observed experi- 
mentally and numerically by Horne & O’Sullivan (1974) and numerically by Caltagi- 
rone (1974,1975). Straus (1974), in an analytical examination of the stability of steady 
two-dimensional rolls to three-dimensional disturbances, concluded that no two- 
dimensional convective pattern is stable above the second critical Rayleigh number 
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R, which he showed to be dependent on the aspect ratio of the roll but in no case 
larger than 380. This work however was done for the infinitely wide, unconfined layer, 
and bears only indirectly on finite domain applications. 

Although the results of Straus (1974) show that a two-dimensional roll pattern is 
stable inside an envelope in the Rayleigh number/roll wavenumber plane, it  has not 
as yet been conclusively determined what kinds of flow exist outside of this envelope 
or in confined systems. The experiments of Caltagirone et al. (1971) performed in a 
narrow three-dimensional space (38 ern long, 2 ern wide and 4-6 ern deep), suggest 
the two-dimensional fluctuating convective state, a fact which led to the various 
two-dimensional numerical studies of this state. However, Horne & O’Sullivan (1974) 
have demonstrated that the flow is not unique at  Rayleigh numbers up to about twice 
R, and that there exists both steady and unsteady alternatives. A similar situation 
was observed by Caltagirone (1974, 1975) who obtained both steady and unsteady 
flows at  the same Rayleigh number by altering the aspect ratio of the convective cells. 
The reason for the existence of these alternatives is indicated by Straus’ (1974) sta- 
bility envelope, a t  a particular Rayleigh number within a certain range, convective 
cells of certain wave numbers lie within the envelope of stable steady two-dimensional 
flows while others lie outside it, although as pointed out by Straus & Schubert (1978) 
both the base state and the disturbance must fit between the boundaries for this 
envelope to have meaning for a finite system. However since these studies were all 
explicitly two-dimensional the results obtained represent only a subset of possible 
three-dimensional flows ; the two-dimensional flows observed may well be stable and 
viable forms (as is clear from the two-dimensional fluctuating experimental flows), 
nevertheless the nature of any precluded three-dimensional flow is not understood. 
An extension of these analyses to three dimensions is required. 

Experimental results reported by Bories, Combarnous & Jaffrenou (1972) in a 
wide layer (46 x 66 x 53 ern deep) show three-dimensional flows moving in steady 
polyhedral convective cells at  Rayleigh numbers between the first and second critical 
values (R, and R2). Such flows clearly lie outside Straus’ (1974) stability envelope 
for the infinite layer. Holst & Aziz (1972), in a transient three-dimensional numerical 
analysis of the evolution of convective patterns in cubic boxes, observed that while 
at  low Rayleigh numbers (close to R,) two-dimensional rolls transfer more energy 
(indicated by the Nusselt number) than three-dimensional flows, at  higher Rayleigh 
numbers (but still between R, and R,) the reverse is true. The first result was confirmed 
by Zebib & Kassoy (1978). However, counter to the idea of Platzman (1965), Horne 
& O’Sullivan (1974) have already demonstrated cases in which the energy transfer is 
not maximized (even though the tendency may exist) and it is anticipated that many 
stable flows will exist for any particular physical configuration and Rayleigh number. 
Beck (1972) has illustrated the many possible convective regimes a t  conditions even 
only marginally above the first critical Rayleigh number. 

In  addition to the possibilities of separate flow regimes, the interaction between 
them must be considered. Zebib & Kassoy (1978) used the method of weakly non- 
linear analysis (Palm, Weber & Kvernvold 1972) to develop a two-term expansion 
for the temperature and velocity fields and for the Nusselt number a t  values of the 
Rayleigh number slightly above R,. Their results show that the Nusselt numbers 
associated with either of the possible two-dimensional roll motions (aligned in either 
horizontal co-ordinate direction) are identical (i.e. either orientation is equally 
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probable), and are larger than the Nusselt number of the three-dimensional motion 
resulting from the non-linear interaction of these two motions. This could be an 
indication of transformability of a particular flow regime; the three-dimensional flow 
would increase its energy transfer by transforming into either of the two possible 
two-dimensional patterns (since either is equally probable presumably some pertur- 
bation in favour of one would be required). The reverse transformation would sup- 
posedly be less likely. It should be noted however that the ‘ three-dimensional ’ motion 
considered by Zebib & Kassoy was a superposition of orthogonal rolls (sin ax+ sinby) 
rather than an intrinsically three-dimensional motion (sin ax sin by). 

Recently, Straus & Schubert (1978) have specifically examined the stability of 
convective flow in a finite three-dimensional box, and have isolated the particular box 
dimensions for which no stable two-dimensional flow exists. Although they considered 
confining boxes that were taller than wide, this work is particularly significant in 
that it has determined for the first time conditions under which a particular flow can 
not exist, although the tall boxes they considered admittedly do not allow the exist- 
ence of very many disturbances. It is clear that proof that a particular flow regime can 
exist is not very appropriate to nonlinearly unstable flows for which it has been 
shown that more than one regime can exist under identical conditions. The work of 
Straus & Schubert (1978) does not directly shed light on the question of whether 
three-dimensional convective states and two-dimensional fluctuating convective 
states are actually alternatives to one another or if they exist under different condi- 
tions. However in a still more recent work, Schubert & Straus (1978) have shown that 
transitions from steady to oscillatory two-dimensional convection cannot occur for 
the unconfined system since the steady two-dimensional flow becomes unstable to 
three-dimensional disturbances before becoming unstable in a strictly two-dimensional 
way by becoming oscillatory. On the other hand, in the confined system it is necessary 
that the three-dimensional disturbance fits into the box; if it does not, then the flow 
may well undergo the transition to oscillatory two-dimensional convection first. 

With the object of scrutinizing these various points, this investigation extends the 
work of Holst & Aziz (1972)) making use of more sophisticated numerical techniques 
which permit calculation of flow patterns a t  higher Rayleigh numbers, on finer finite 
difference meshes and for much longer periods of time. Initially, as a test on the pro- 
cedure the flowsituationsconsidered by Zebib & Kassoy (1978) are confirmed for small 
Rayleigh numbers just greater than R,; subsequently, the stability of three-dimen- 
sional flows a t  Rayleigh numbers above R, is evaluated in the light of previous two- 
dimensional studies (Horne & O’Sullivan, 1974; Caltagirone, 1974, 1975). 

2. Description of the problem 
Consider the natural convective motion of a fluid filling a homogeneous, isotropic 

porous medium confined on all sides by an impermeable rectangular box. The box is 
heated from below, cooled from above, and insulated on all vertical sides. The equations 
of motion governing the flow of fluid in this situation are the conservation of mass, 
momentum and energy, v.u = 0, (1) 

R 
h 

U = -(jS)-VP, 
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and (3) 

where U, P and 6 are the non-dimensional velocity, pressure and temperature fields, 
X and r are the non-dimensional space vector and time, j is a unit normal vector 
pointing vertically upward and h is the ratio of the volumetric heat capacity of the 
fluid to that of the saturated formation. The Rayleigh number R is defined by 

gakATaA R =  
KV (4) 

The physical parameters governing the problem are g the acceleration due to gravity, 
a the depth of the flow region, k the permeability of the medium, AT the temperature 
differential between the heat source and sink, CY the volumetric thermal expansion 
coefficient of the saturating fluid, v its kinematic viscosity, and K the thermal diffu- 
sivity of the fluid-filled medium. The non-dimensional forms of the dependent and 
independent variables are given by 

r = ( ~ / a Z ) t  (time), 

X = x/u (space), 

U = (CZ/K) u (velocity), 

k 
PKV 

P = - p  (pressure), 

6 = (T-T’,,)/AT (temperature), 

where Tmln is the minimum boundary temperature in the region and lower case cha- 
racters represent variables equivalent to the dimensionless variable being defined. 

Inherent in the derivation of these equations are a number of assumptions: 
(a)  The Boussinesq assumption (see Yih 1969, p. 441; also Straus & Schubert 1977). 
(a) Inertial effects are small (low Reynolds number; see Batchelor 1967, p. 223). 
(c) Viscosity v is constant (see Straus & Schubert 1977). 
(d) Thermal dispersion is negligible (see Rubin 1974). 
(e )  Saturating fluid and porous solid are in thermal equilibrium (see Combarnous 

1972). 
Each of these assumptions incur certain small inaccuracies, and the references cited 

give discussions of the conditions under which these inaccuracies become significant. 
For the present study none is of major importance. 

The governing equations may be made more tractable in either of two alternative 
formulations, one involving only pressure and temperature and the other involving 
temperature and a vector potential function. 

The pressure formulation is obtained by eliminating velocity between equations ( 1) 
and (2), after taking the divergence of (2) and substituting (1) ,  thus 

V2P = as/ay, (5) 

where Y is the component of X pointing vertically upward, and P has been scaled by 
a factor R/A. The Laplacian operator is defined 

v= = apx + a /a  Y + a/az. 
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The velocity vector may then also be eliminated between equations (2) and (3), such 
that 

and equations (5) and (6) now form the governing pair for the problem. 
The boundary conditions on 0 and P for the problem region described earlier are: 

and 

ae/an = 0 on all vertical boundary surfaces, 

O = O  on Y = O  
8 = 1  on Y = l ,  

aP/an = 0 on all boundary surfaces, 

where n is the outward pointing normal vector. 
Due to the solenoidal form of U in equation ( l ) ,  there is an alternative formulation 

described by Holst & Aziz (1972) in which a vector potential cp is introduced such that 

h 
R - u = v x c p .  

Then, taking the curl of equation (2), 

h 
- (V x U) = V x (je). 
R 

(7) 

Substituting the definition (7) of cp and making use of the fact that it is arbitrary to 
the gradient of a scalar (hence its divergence may be set to zero), 

v2cp = (ae/az, 0, - ae/ax). (9)  

Considering the boundary conditions on cp for a closed, impermeable, cubic box, it 
is seen that 

a$,/aX = $z = $3 = 0 on X = 0 , 1 ,  

a$,/aY = $1 = $3 = 0 on Y = o , i ,  

and a$,/aZ = $1 = $z = O on 2 = 0, I .  

As a consequence of these boundary conditions and equation (9), the component $2 

of the vector potential is zero everywhere within the region. Thus the final form of 
the vector potential equations may be written as 

v2$, = ae/az, v2$, = aslax, (lo),  (11 )  

together with the energy equation 

where the Jacobian operation is described typically by 

a(s,==_---- ae a$ ae a~ 
a(x, Y )  - ax ay ay a x -  

Even though it may seem that the pressure formulation with its two equations is 
more manageable than the vector potential formulation which has three, in fact the 
vector potential equations may be solved numerically much faster and with greater 
accuracy. 
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3. Numerical solution 
The numerical solution of nonlinear partial differential equations is seldom tractable 

in more than two dimensions, however the forms of the governing equations and the 
regular boundary conditions in this case permit specialized techniques to be applied, 
allowing accurate, long time solutions a t  reasonable expense. As in the two-dimensional 
formulation of this problem described by Horne & O’Sullivan (19741, the finite differ- 
ence solution depends firstly on the rapid direct solution of the Poisson equation 
[(5) or (10) and (1  l)] and secondly on the accurate, energy conservative differencing 
of the advcction terms in the energy equation [(6) or (la)]. 

The direct, non-iterative, odd-even reduction algorithm for the solution of the 
Poisson equation (as described by Busbee, Golub & Nielson 1970) can be extended 
to applications on three-dimensional finite difference meshes. I n  order to evaluate 
which of the alternative formulations of the governing equations would be most 
suitable, it was necessary to develop two forms of the algorithm corresponding to the 
different types of boundary conditions on pressure and vector potential. Calculation 
of a pressure field on a 17 x 17 x 17 grid requires representation on all 4913 modes of 
the mesh, since all six boundary surfaces have Neumann type boundary conditions. 
On the other hand, calculation of either vector potential field requires representation 
on only 15 x 15 x 17 or 3825 modes of the mesh since on four of the six boundary 
surfaces the function is already specified by the Dirichlet type boundary condition. 
I n  addition the algorithm for all Neumann boundaries incurs much greater pro- 
gramming overhead. Thus overall the numerical solution of the single equation (5) 
actually requires about 30 yo more CPU time than the solutions to both (10) and ( 1  1)  
in the vector potential formulation. 

The energy equation has been successfully solved in Horne & O’Sullivan (1974) 
using an explicit, forward time stepping procedure. However the development of 
solutions over a long period of time was critically dependent on the representation 
of the advection terms [terms like (a$/a Y )  (aO/aX) for example] without accumulating 
false, numerically generated energy. This artificial energy may be dissipated to some 
extent by the thermal dispersion inherent in the equation, but only at  relatively small 
Rayleigh number (say SLS high as 100). The difference scheme derived by Arakawa 
(1966) specifically conserves kinetic energy and mean square temperature in an 
application such as this (in the absence of time differencing errors), however unfor- 
tunately it is applicable only to combinations of first derivatives in Jacobian form. 
During the course of this investigation several attempts were made to derive an 
equivalent conservative scheme to represent the non-Jacobian advection terms which 
appear in the pressure-formulated energy equation ( G ) ,  however without success. 
There exists an alternative and very powerful finite difference scheme for evaluating 
first derivatives that is due to Kreiss and is described by Orszag & Israeli (1974) and 
Hirsh (1975). Kreiss’ scheme was tested against Arakawa’s during the investigation 
and gave identical results for a two-dimensional problem a t  high Rayleigh number, 
however, i t  has not been proven to conserve (or more precisely semi-conserve) energy 

*in the same way. Furthermore the method is implicit and was more expensive (by a 
factor of about 1.5) to compute. 

Thus overall a solution procedure for the coupled energy and momentum eqttations 
is faster for the vector potential formulation by a factor of about 1.4, for comparable 
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4th-order accuracy in the advection terms. Since the pressure formulation also could 
not specifically be shown to avoid artificial generation of numerical energy, the vector 
potential formulation was selected as the most suitable approach. 

Run times for solutions on a 17 x 17 x 17 mesh (used for the cubic regions) were 
1.5 s/time step on an IBM 370/168 machine. A typical run for about 500 time steps 
consumed on the order of $150 of computer time. The time step used in the calcula- 
tions varied in size between 0.0005 for Rayleigh numbers of 75 to 0.00025 for Rayleigh 
numbers of 300. 

The choice of mesh size is most severely restricted by financial limitations, and the 
17 x 17 x 17 grid is admittedly coarse for Rayleigh numbers in excess of 400, see 
Horne & O'Sullivan (1974). However the moderate values of R, the method can be 
used with reasonable confidence, although it is a property of finite difference methods 
that the Nusselt number tends to be over-estimated owing to the necessity of taking 
one-sided differences a t  the boundary. It should be remembered however that spectral 
methods also suffer from similar restrictions on size. 

4. Numerical results 
The flow region considered was a cubic box in all cases. This permits examination 

of flows which are initially a t  a single wavenumber (a = n), presupposing that the 
convection cell fills a length of the box. Frequently in the solution the flows altered 
their wavenumber as time developed. Thus a series of flows were generated for various 
Rayleigh numbers initially along the 'square cell ' wavenumber locus, with particular 
emphasis on determining the dimensionality of the flow under conditions above each 
of the two transition points. I n  each case an initial convective disturbance of a par- 
ticular wavenumber was introduced into the flow region a t  time zero, to determine 
its resilience to instability in favour of other modes. The initial perturbation was 
given by 

where f is an arbitrary small parameter between 5 1.  The flows are summarized in 
table 1, with comparative descriptions from previous work. The nature of the develop- 
ment and final form of three-dimensional flows are complex and difficult to describe 
within the confines of two-dimensional diagrams, however a description of each flow 
in a little detail indicates relevant features. 

Cases (f), ( d ) :  these two solutions were generated as an initial check on the program 
to confirm that the three-dimensional algorithm produces results consistent with 
experiments and with previous two-dimensional numerical studies. It should be 
emphasized that with an initial (1 ,1 ,0 )  modal disturbance introduced into the flow 
region, there is no possibility of three-dimensional flows unless further stimulation 
in the third dimension occurs. The algorithm used was sufficiently accurate that in 
no case was any perturbation due to numerical round-off observed. Such might not 
always be the case if the system is not as symmet':ical as the cube. The Nusselt numbers 
should therefore be comparable with two-dimensional results (they are in fact con- 
sistently about 8 yo higher than those quoted throughout this work, but well within 
the range of experimental results; see for example Gupta & Joseph 1973). No infor- 
mation concerning the stability of the flow to disturbances in the third dimension 
can be gained. A typical two-dimensional flow is illustrated in figure 1. 

(14) 0 = ( 1  - Y )  - fcos  m7rX cos ZnZ, 
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Case R 
(a) 76 
(b)  76 
(4 76 
(d) 100 
(e) 100 
(f) 300 
(9 )  300 
(h) 300 
(i) 400 

m 

1 
1 
1 
1 
1 
1 
1 
1 
1 

Bories et al. 
Observed Aspect (1972) 

n 1  flow ratio observation Nu 

1 1 Steady3D 42  3D 2.1 
1 0-8 Steady3D 4 2  3D 2.14 
1 0.1 Steady 2D 1 3D 2-25 
1 0 Steady2D 1 3D 2.8 
1 1 Steady3D 4 2  3D 2.9 
1 0 Fluct. 2D 1 Fluct. 2D - 4.97 
1 0.5 Steady 3D ,/2 Fluct. 2D 6.45 
1 0.1 Fluct. 3D - Fluct. 2D 6 7  
1 0.1 Fluct. 3D - FluCt. 2D 7-8 

1 From Gupta & Joseph (1973), upper bound. 
* From Combarnous & LeFur (1969). 

From Zebib & Kassoy (1978), approximate. 
4 From Caltagirone (1974). 

TABLE 1 

Pre- 
dicted 
3D Nu 
1.788 
1.788 
1.788 
3*0* 
3.0a 
6.U 
6.6l 
6.P 
8-01 

Pre- 
dicted 
2D Nu 

1.96' 
1.95* 
1.955 
2.6614 
2 ~ 6 6 1 ~  
4.623' 
5.0164 
6.016' 
6-05' 

FIGURE 1. Two-dimensional flow a t  R = 75. (a) Streamlines; (b) isotherms. Flow is represented 
on a vertical X, Y plane. Isotherm numbers 1, 2, 3, 4, 5, 6 correspond to temperatures of 
1 z a 4 e s  
1, 7, 7,  ?, ?, respectively. 

Cases (a ) ,  ( e ) :  these two three-dimensional flows are also falsely determined since 
there is absolute identity between the two horizontal axes (X and Z ) ,  SO the flow is 
constrained to retain its three-dimensional character in the absence of some pertur- 
bation with respect to one axis only. The Nusselt numbers obtained give a basis for 
comparison as to which of the two- or three-dimensional regimes gives rise to greater 
energy transfer. A typical three-dimensional flow is illustrated in figure 2. 

Cases ( b ) ,  (c): when the flow initiates in a regime that is almost symmetrically three- 
dimensional (case b ) ,  the final mode of flow is three-dimensional and essentially iden- 
tical to the constrained flow (case a).  However when the flow is originally almost 
two-dimensional (case c) i t  becomes completely two-dimensional and follows a roll 
motion. The paradoxical behaviour of these two flows may be resolved by noting that 
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FIGURE 2. Three-dimensional flow at R = 75. (a)  Streamlines on vertical plane diagonal to 
cube; (71) isotherms on vertical plane diagonal to cube; (c) isotherms on horizontal plane Y = &; 
( d )  isotherms on horizontal plane Y = t .  

the roll numbers of the final form of the flows are different. The three-dimensional flow 
consists of two counter-rotating rolls each with axes aligned across the diagonals of 
the box, hence the wavenumber of each roll is J2. 

Cases ( g ) ,  (h) ,  (i): these three flow situations are of particular interest in that they 
cannot lie within Straus’s envelope of stable two-dimensional flows in an infinite layer. 
Originating from a three-dimensional flow that is dominant in one horizontal dimen- 
sion (case g),  the motions tends toward a more symmetrical three-dimensional pattern, 
and settles down to polyhedral celIs of square areal cross-section similar to those 
described in cases ( b )  and (c ) .  These cells may be observed in the isothermal surface 
plots of figure 3, in which the 0.8, 0.5 and, 0.2 isothermal surfaces are drawn viewed 
from two different angles. It should be noted that the rising fluid ‘ridge’ in the 0.8 
surface is perpendicular to the falling fluid ‘valley’ in the 0-2 surface; this observation 
is characteristic of truly three-dimensional flows, and it is useful to look for this 
behaviour in more complex flows. 

When the flow is originally almost two-dimensional (case ( h ) ) ,  the initial motion 
remains for some time in a two-dimensional convective state (see Horne 1978). 
However, it  later becomes unstable in the third dimension. This flow is somewhat 
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FIGURE 3. Steady three-dimensional flow at R = 300. Isothermal surfaces. (a) I9 = 0.2; 
( b )  0 = 0.5; and (c )  19 = 0.8. Each surface is presented from two viewpoints. 
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difficult to illustrate, but consists largely of an overall two-dimensional flow with 
‘waves’ moving in the third dimension. This behaviour can be seen in the section 
diagram sequence in figures 4(a)-(d) and (e)-(h), and also in the 0.8 isothermal surface 
sequence in figures 5(a ) - ( e ) .  A 16 mm film of this flow is available, and shows the 
transient behaviour a little more clearly than is possible here. The ‘wave ’ formation 
is extremely similar to the evolution of thermal disturbances in the two-dimensional 
fluctuating convective state. This similarity is even more striking when the Rayleigh 
number is increased to 400 (case i ) ,  where two ‘waves ’ can be seen rolling toward one 
another (figure 6) and finally coalescing and rising as a thermal is formed. The trans- 
ient behaviour of cases ( h )  and ( i )  can be seen in the plot of Nusselt number against 
time (figure 7) .  The time periods are of the order of 0.05 and 0.02 respectively, com- 
pared to a time period of around 0.015 for a two-dimensional disturbance at Rayleigh 
numbers of 400. 

5. Conclusions 
The behaviour of natural convective flow through porous media in three dimen- 

sions is extremely complex, and it is not yet possible to fully describe the overall 
stability of the flows from the small number of realizations reported here and else- 
where. However, several illuminating facts are evident from this investigation. 
Consider the initial contention that Bories et al. (1972) observed three-dimensional 
cells in experiments a t  Rayleigh numbers for which Straus (1974) showed that two- 
dimensional rolls are stable to a perturbation of any amplitude in the third dimension. 
It should be remembered that a flow which is stable in the infinite system cannot be 
unstable in the confined system. It should now be clear that Straus’s analysis shows 
that the two-dimensional rolls once they exist are stable to perturbations in the third 
dimension. The fundamental conclusion of the work by Horne & O’Sullivan (1974) 
was that more than one flow regime can be observed under identical conditions, 
depending on the initial conditions. In  two dimensions, Horne & O’Sullivan (1974) 
and Caltagirone (1975) have observed that, as Rayleigh number increases, the wave- 
number of the convective disturbance that transfers maximum energy becomes larger. 
Therefore, it might be expected that even though a flow may start in the form of a 
unit cell at  higher Rayleigh numbers, the wavenumber of the prime disturbances 
could increase. Such need not be the case, however, since there are situations in which 
a dominant circulation of lower wavenumber can overcome any attempt by the system 
to increase in wavenumber, although it is evident from this investigation that this is 
more likely to occur when the flow is constrained to move in two dimensions than 
when it is free to move in all three. Following a parallel idea, it  might be anticipated 
that in three dimensions a flow would tend towards either two- or three-dimensional 
modes depending on which resulted in the greater energy transfer. For example, at 
Rayleigh number 75, the analysis of Zebib & Kassoy (1978) indicates that a two- 
dimensional flow will convect more energy than one in three dimensions; this is borne 
out in these results. However stable flows need not necessarily maximize the energy 
transfer so the three-dimensional flow observed by Bories et al. (1972) is not un- 
expected, particularly since they are not precluded by the stability analysis of Straus 
(1974). In  view of the more recent stability analysis of Straus & Schubert (1978), it  
is also interesting to examine the dimensions of the experimental configurations used 
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FIGURE 4. For legend see facing page. 

earlier. As stated earlier, Bories et al. (1972) used a slab-like box 46 x 66 x 5.5 cm 
deep, and Combarnous & LeFur (1969) used a similar arrangement, 37 x 60 x 5.5 crn 
deep. These configurations lie deeply in toward the origin in the stability diagram of 
Straus & Schubert (1978), which considers tall boxes. However, the indications of the 
analysis by Beck (1972) are that three-dimensional modes are likely with such a wide 
region, a t  least close to the linear stability limit. On the other hand, the two-dimensional 
fluctuating rolls were observed by Caltagirone et al. (1971) in a thin vertical slot-like 
arrangement 38 cm long, 2 cm wide, and P 6  cm deep. Thus, the two-dimensional 
nature of this flow is not unexpected. 

The behaviour of the unsteady flows observed at Rayleigh numbers of 300 and 
400 is also of great interest. The two-dimensionaI fluctuating convective state was 
attributed by Horne & O’Sullivan (1978) partly to instability of the thermal boundary 
layers. Examination of figure 4 reveals that here the instability (at the top and bottom 
of the box) initiates as a disturbance that causes an overturning (or roll) with its axis 
perpendicular to the original roll. This is exactly the behaviour proposed by Straus 
(1974). The mechanism of the fluctuating flow is the same as the two-dimensional case, 
but the resulting convection is more complex. The properties of the flow at Rayleigh 
number 300 are also similar to those in the two-dimensional analysis in that both 
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FIQTJRE 4. (a)-(d)  Later three-dimensional flow at R = 300. Planes of diagram as in 
figure 2. (e)-(h) Flow and isothermal pattern, time 0.01 after figure 4(a)-(4. 

steady and unsteady alternatives exist. It has already been noted that alternative 
flow configurations occur at the same Rayleigh number, and Horne & O’Sullivan 
(1974) have highlighted the influence of confining boundaries on the appearance of 
one alternative or another. 

In  conclusion, the natural convective flow of fluid through a porous medium is 
more complicated than previous studies have shown. It has already been acknow- 
ledged that alternative flow regimes exist in purely two-dimensional patterns, and 
the added freedom in the third dimension increases the number of possibilities. It has 
therefore been possible to clarify some apparent inconsistencies between previously 
reported results, which in fact turned out to be not contradictory. 
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~ , 

FIUURE 5. Unsteady three-dimensional flow at R = 300. Sequence of 0 = 0.8 
isothermal surfaces. 

FIGURE 6. Unsteady three-dimensional flow at R = 400. 
Sequence of 0 = 0.8 isothermal surfaces. 
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